Teorema A : Teorema Dasar Limit
Jika n bilangan bulat positif, k konstan, f dan g fungsi yang mempunyai limit di c, maka berlaku
1. \(\mathrm{_{x \to c}^{lim}}\) k = k
2. \(\mathrm{_{x \to c}^{lim}}\) x = c
3. \(\mathrm{_{x \to c}^{lim}}\) k f(x) = k \(\mathrm{_{x \to c}^{lim}}\) f(x)
4. \(\mathrm{_{x \to c}^{lim}}\) [ f(x) + g(x) ] = \(\mathrm{_{x \to c}^{lim}}\) f(x) + \(\mathrm{_{x \to c}^{lim}}\) g(x)
5. \(\mathrm{_{x \to c}^{lim}}\) [ f(x) − g(x) ] = \(\mathrm{_{x \to c}^{lim}}\) f(x) − \(\mathrm{_{x \to c}^{lim}}\) g(x)
6. \(\mathrm{_{x \to c}^{lim}}\) [ f(x) . g(x) ] = \(\mathrm{_{x \to c}^{lim}}\) f(x) . \(\mathrm{_{x \to c}^{lim}}\) g(x)
7. \(\mathrm{_{x \to c}^{lim}\frac{f(x)}{g(x)}}\) = \(\mathrm{\frac{_{x \to c}^{lim}\,f(x)}{_{x \to c}^{lim}\,g(x)}}\), dengan \(\mathrm{_{x \to c}^{lim}}\) g(x) ≠ 0
8. \(\mathrm{_{x \to c}^{lim}}\) [ f(x) ]n = \(\mathrm{\left [_{x \to c}^{lim}\,f(x) \right ]^{n}}\)
9. \(\mathrm{_{x \to c}^{lim}\sqrt[\mathrm{n}]{\mathrm{f(x)}}}\) = \(\sqrt[\mathrm{n}]{\mathrm{_{x \to c}^{lim}\,f(x)}}\)
dengan \(\mathrm{_{x \to c}^{lim}}\) f(x) > 0 ketika n genap.
Contoh 1
Hitung limit berikut dengan menggunakan teorema dasar limit !
a. \(\mathrm{_{x \to 3}^{lim}}\) (2x + 3)
Jawab :
\(\mathrm{_{x \to 3}^{lim}}\) (2x + 3) = \(\mathrm{_{x \to 3}^{lim}}\) 2x + \(\mathrm{_{x \to 3}^{lim}}\) 3 (teorema A.4)
\(\mathrm{_{x \to 3}^{lim}}\) (2x + 3) = 2 \(\mathrm{_{x \to 3}^{lim}}\) x + 3 (A.3 dan A.1)
\(\mathrm{_{x \to 3}^{lim}}\) (2x + 3) = 2 . 3 + 3 (A.2)
\(\mathrm{_{x \to 3}^{lim}}\) (2x + 3) = 9
b. \(\mathrm{_{x \to 5}^{lim}\sqrt{x^{2}-16}}\)
Jawab :
\(\mathrm{_{x \to 5}^{lim}\sqrt{x^{2}-16}}\) = \(\mathrm{\sqrt{_{x \to 5}^{lim}\,(x^{2}-16)}}\) (A.9)
\(\mathrm{_{x \to 5}^{lim}\sqrt{x^{2}-16}}\) = \(\mathrm{\sqrt{_{x \to 5}^{lim}\,x^{2}-\,_{x \to 5}^{lim}\,16}}\) (A.5)
Jika \(\mathrm{_{x \to a}^{lim}}\) f(x) = 3 dan \(\mathrm{_{x \to a}^{lim}}\) g(x) = 8, tentukan nilai dari \(\mathrm{_{x \to a}^{lim}\frac{f^{2}(x)\,-\,g(x)}{2f(x)\,+\,\sqrt[3]{\mathrm{g(x)}}}}\)
Jawab :
\(\mathrm{_{x \to a}^{lim}\frac{f^{2}(x)-g(x)}{2f(x)+\sqrt[3]{\mathrm{g(x)}}}}\) = \(\mathrm{\frac{\left [_{x \to a}^{lim}\,f(x) \right ]^{2}\;-\;_{x \to a}^{lim}\,g(x)}{2\,_{x \to a}^{lim}\,f(x)\;+\;\sqrt[3]{\mathrm{_{x \to a}^{lim}\,g(x)}}}}\)
\(\mathrm{_{x \to a}^{lim}\frac{f^{2}(x)-g(x)}{2f(x)+\sqrt[3]{\mathrm{g(x)}}}}\) = \(\frac{3^{2}\;-\;8}{2.3\;+\;\sqrt[3]{8}}\)
\(\mathrm{_{x \to a}^{lim}\frac{f^{2}(x)-g(x)}{2f(x)+\sqrt[3]{\mathrm{g(x)}}}}\) = \(\frac{1}{8}\)
Teorema B : Teorema Substitusi
Jika f adalah fungsi polinom atau fungsi rasional dan f terdefinisi di c, maka $$\mathrm{\lim_{x\rightarrow c}f(x)=f(c)}$$
Contoh 3
Jika f(x) = x3 − 3x, tentukan \(\mathrm{_{x \to 2}^{lim}}\) f(x)
Jawab :
Perhatikan bahwa f(x) adalah fungsi polinom dan kita tahu bahwa fungsi polinom terdefinisi untuk setiap x bilangan real. Jadi, f(x) terdefinisi di 2, akibatnya
\(\mathrm{_{x \to 2}^{lim}}\) (x3 − 3x) = 23 − 3.2 = 2
Contoh 4
Jika g(x) = \(\mathrm{\frac{x^{2}+x-6}{x-2}}\), tentukan \(\mathrm{_{x \to 1}^{lim}}\) g(x)
Jawab :
Perhatikan bahwa g(x) adalah fungsi rasional dan kita tahu bahwa fungsi rasional terdefinisi untuk setiap x bilangan real kecuali nilai-nilai x yang menyebabkan penyebutnya bernilai nol, yaitu x = 2. Jadi, g(x) terdefinisi di 1, akibatnya
\(\mathrm{_{x \to 1}^{lim}}\) \(\mathrm{\frac{x^{2}\,+\,x\,-\,6}{x\,-\,2}}\) = \(\mathrm{\frac{1^{2}\,+\,1\,-\,6}{1\,-\,2}}\) = 4
Contoh 5
Diketahui f(x) = \(\left\{\begin{matrix}
\mathrm{2x\,\,\,\,\,\,\,\,\,\,jika\,x<1}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\\ \mathrm{x^{2}\,\,\,\,\,\,\,\,\,\,jika\,\,1\leq x< 2}\,\,\,\,\,
\\ \mathrm{x+2\,\,jika\,x\geq 2}\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,\,
\end{matrix}\right.\)
Tentukan limit berikut jika ada !
a. \(\mathrm{_{x \to 1}^{lim}}\) f(x)
b. \(\mathrm{_{x \to 2}^{lim}}\) f(x)
Jawab :
a. Untuk x < 1, f(x) = 2x, sehingga
\(\mathrm{_{x \to 1^{-}}^{lim}}\) f(x) = \(\mathrm{_{x \to 1^{-}}^{lim}}\) 2x = 2 . 1 = 2
Untuk x > 1, f(x) = x², sehingga
\(\mathrm{_{x \to 1^{+}}^{lim}}\) f(x) = \(\mathrm{_{x \to 1^{+}}^{lim}}\) x2 = 12 = 1
Limit kiri ≠ limit kanan, akibatnya
\(\mathrm{_{x \to 1}^{lim}}\) f(x) tidak ada
b. Untuk x < 2, f(x) = x², sehingga
\(\mathrm{_{x \to 2^{-}}^{lim}}\) f(x) = \(\mathrm{_{x \to 2^{-}}^{lim}}\) x2 = 22 = 4
Untuk x > 2, f(x) = x + 2, sehingga
\(\mathrm{_{x \to 2^{+}}^{lim}}\) f(x) = \(\mathrm{_{x \to 2^{+}}^{lim}}\) (x + 2) = 2 + 2 = 4
Limit kiri = limit kanan = 4, akibatnya
\(\mathrm{_{x \to 2}^{lim}}\) f(x) = 4
Teorema C
Jika f(x) = g(x) ketika x ≠ c, maka $$\mathrm{\lim_{x\rightarrow c}f(x)=\lim_{x\rightarrow c}g(x)}$$ asalkan limitnya ada.
Contoh 6
Hitung \(\mathrm{_{x \to 2}^{lim}\,\frac{(x\,-\,2)(x\,+\,3)}{x\,-\,2}}\)
Jawab :
Karena \(\mathrm{\frac{(x\,-\,2)(x\,+\,3)}{x\,-\,2}}\) = x + 3, ketika x ≠ 2, akibatnya
\(\mathrm{_{x \to 2}^{lim}\,\frac{(x\,-\,2)(x\,+\,3)}{x\,-\,2}}\) = \(\mathrm{_{x \to 2}^{lim}}\) (x + 3)
\(\mathrm{_{x \to 2}^{lim}\,\frac{(x\,-\,2)(x\,+\,3)}{x\,-\,2}}\) = 2 + 3
\(\mathrm{_{x \to 2}^{lim}\,\frac{(x\,-\,2)(x\,+\,3)}{x\,-\,2}}\) = 5
Contoh 7
Diketahui f(x) = \(\mathrm{\frac{\left | x-1 \right |}{x-1}}\). Hitung \(\mathrm{_{x \to 1}^{lim}\,f(x)}\) jika ada !
Jawab :
Berdasarkan definisi nilai mutlak :
|x − 1| = x − 1 jika x ≥ 1
|x − 1| = −(x − 1) jika x < 1
Untuk x < 1, f(x) = \(\mathrm{\frac{-(x-1) }{x-1}}\) = -1, sehingga
\(\mathrm{_{x \to 1^{-}}^{lim}}\) f(x) = \(\mathrm{_{x \to 1^{-}}^{lim}\,(-1)}\) = -1
Untuk x > 1, f(x) = \(\mathrm{\frac{x-1 }{x-1}}\) = 1, sehingga
\(\mathrm{_{x \to 1^{+}}^{lim}}\) f(x) = \(\mathrm{_{x \to 1^{+}}^{lim}\,(1)}\) = 1
Limit kiri ≠ limit kanan, akibatnya
\(\mathrm{_{x \to 1}^{lim}\frac{\left | x-1 \right |}{x-1}}\) tidak ada
Teorema D : Teorema Apit
Misalkan f, g dan h adalah fungsi-fungsi yang memenuhi f(x) ≤ g(x) ≤ h(x) untuk setiap x di dekat a, kecuali mungkin di a. $$\mathrm{\lim_{x\rightarrow c}f(x)=\lim_{x\rightarrow c}h(x)=L\;\;\Rightarrow\;\; \lim_{x\rightarrow c}g(x)=L}$$
Contoh 8
Jika untuk setiap x berlaku 2x ≤ f(x) ≤ x2 + 1, hitunglah \(\mathrm{_{x \to 1}^{lim}}\) f(x)
Jawab :
2x ≤ f(x) ≤ x2 + 1
\(\mathrm{_{x \to 1}^{lim}}\) 2x = 2 . 1 = 2
\(\mathrm{_{x \to 1}^{lim}}\) (x2 + 1) = 12 + 1 = 2
Karena \(\mathrm{_{x \to 1}^{lim}}\) 2x = \(\mathrm{_{x \to 1}^{lim}}\) (x2 + 1) = 2, berdasarkan teorema apit kita simpulkan
\(\mathrm{_{x \to 1}^{lim}}\) f(x) = 2
Contoh 9
Gunakan teorema apit untuk menunjukkan bahwa \(\mathrm{_{x \to 0}^{lim}}\) x sin\(\mathrm{\left (\frac{1}{x} \right )}\) = 0
Jawab :
Nilai sin θ selalu berada pada interval -1 dan 1 berapapun θ. Secara matematis kita tulis
-1 ≤ sin θ ≤ 1
Jika θ = \(\mathrm{\left (\frac{1}{x} \right )}\), maka -1 ≤ sin\(\mathrm{\left (\frac{1}{x} \right )}\) ≤ 1
Jika setiap ruas dikalikan dengan x akan diperoleh 2 kasus berikut :
Kasus 1 : Untuk x > 0 diperoleh
-x ≤ x sin\(\mathrm{\left (\frac{1}{x} \right )}\) ≤ x
Karena \(\mathrm{_{x \to 0^{+}}^{lim}}\)-x = \(\mathrm{_{x \to 0^{+}}^{lim}}\)x = 0, sesuai teorema apit kita simpulkan
\(\mathrm{_{x \to 0^{+}}^{lim}}\) x sin\(\mathrm{\left (\frac{1}{x} \right )}\) = 0 ……….(1)
Kasus 2 : Untuk x < 0 diperoleh
-x ≥ x sin\(\mathrm{\left (\frac{1}{x} \right )}\) ≥ x atau dapat pula ditulis
x ≤ x sin\(\mathrm{\left (\frac{1}{x} \right )}\) ≤ -x
Karena \(\mathrm{_{x \to 0^{-}}^{lim}}\)x = \(\mathrm{_{x \to 0^{-}}^{lim}}\)-x = 0, sesuai teorema apit kita simpulkan
\(\mathrm{_{x \to 0^{-}}^{lim}}\) x sin\(\mathrm{\left (\frac{1}{x} \right )}\) = 0 ………..(2)
Dari persamaan (1) dan (2), dapat kita lihat bahwa limit kiri dan limit kanan x sin\(\mathrm{\left (\frac{1}{x} \right )}\) untuk x menuju 0 nilainya sama, yaitu 0. Akibatnya
\(\mathrm{_{x \to 0}^{lim}}\) x sin\(\mathrm{\left (\frac{1}{x} \right )}\) = 0
Dari grafiknya jelas terlihat, kurva y = x sin\(\mathrm{\left (\frac{1}{x} \right )}\) diapit oleh garis y = -x dan y = x dan ketika x mendekati nol, nilai limitnya dipaksa untuk sama dengan nilai limit kedua garis tersebut.