Jika akar-akar persamaan kuadrat \(\mathrm{ax^{2}+bx+c=0}\) adalah α dan β, maka jumlah dan hasil kali akar-akar tersebut dapat ditentukan dengan rumus : $$\mathrm{\alpha +\beta =-\frac{b}{a}}$$ $$\mathrm{\alpha \beta =\frac{c}{a}}$$
Untuk selisih akar-akar persamaan kuadrat, dirumuskan sebagai berikut :
$$\mathrm{\alpha -\beta =\frac{\sqrt{D}}{a}\:\:\:;\:\alpha > \beta }$$ $$\mathrm{\alpha -\beta =-\frac{\sqrt{D}}{a}\:\:\:;\:\alpha < \beta }$$ dengan D adalah diskriminan persamaan kuadrat, dirumuskan dengan :
$$\mathrm{D=b^{2}-4ac}$$
Contoh 1
Akar-akar persamaan kuadrat \(\mathrm{x^{2}-3x+2=0}\) adalah α dan β. Untuk α > β, tentukan nilai dari :
a. α + β
b. αβ
c. α − β
d. \(\frac{1}{\alpha }\) + \(\frac{1}{\beta }\)
e. α2 + β2
f. α2 − β2
g. \(\frac{\alpha }{\beta }\) + \(\frac{\beta }{\alpha }\)
h. α3 + β3
i. α3 − β3
Jawab :
a = 1
b = −3
c = 2
a. α + β = \(\mathrm{-\frac{b}{a }}\)
a. α + β = \(\mathrm{-\frac{(-3)}{1 }}\)
a. α + β = 3
b. αβ = \(\mathrm{\frac{c}{a }}\)
b. αβ = \(\mathrm{\frac{2}{1 }}\)
b. αβ = 2
c. α − β = \(\mathrm{\frac{\sqrt{b^{2}-4ac}}{a}}\)
c. α − β = \(\mathrm{\frac{\sqrt{(-3)^{2}-4.1.2}}{1}}\)
c. α − β = 1
d. \(\frac{1}{\alpha }\) + \(\frac{1}{\beta }\) = \(\frac{\alpha +\beta }{\alpha \beta }\)
d. \(\frac{1}{\alpha }\) + \(\frac{1}{\beta }\) = \(\frac{3}{2}\)
e. α2 + β2 = (α + β)2 − 2αβ
e. α2 + β2 = (3)2 − 2.2
e. α2 + β2 = 5
f. α2 − β2 = (α + β)(α − β)
f. α2 − β2 = (3)(1)
f. α2 − β2 = 3
g. \(\frac{\alpha }{\beta }\) + \(\frac{\beta }{\alpha }\) = \(\frac{\alpha ^{2}+\beta ^{2}}{\alpha \beta }\)
g. \(\frac{\alpha }{\beta }\) + \(\frac{\beta }{\alpha }\) = \(\frac{5}{2 }\)
h. α3 + β3 = (3)3 − 3.2(3)
h. α3 + β3 = 9
i. α3 − β3 = (α − β)3 + 3αβ(α −β)
i. α3 − β3 = (1)3 + 3.2(1)
i. α3 − β3 = 7
Contoh 2
Akar-akar persamaan kuadrat \(\mathrm{x^{2}-(m+2)x+8=0}\) adalah α dan β dengan α, β > 0. Jika \(\alpha =2\beta \), maka nilai m adalah…
Jawab :
a = 1
b = −(m + 2)
c = 8
α + β = \(\mathrm{-\frac{b}{a}}\)
α + β = \(\mathrm{-\frac{−(m + 2)}{1}}\)
α + β = m + 2 …………………….(1)
αβ = \(\mathrm{\frac{c}{a}}\)
αβ = \(\mathrm{\frac{8}{1}}\)
αβ = 8 ……………………………….(2)
Substitusi α = 2β ke (2)
(2β)β = 8
β2 = 4
β = ±2
Karena β > 0, maka β = 2
Substitusi α = 2β ke (1)
(2β) + β = m + 2
3β = m + 2
3.2 = m + 2
⇒ m = 4
Contoh 3
Akar-akar persamaan kuadrat \(\mathrm{ax^{2}+bx+c=0}\) adalah α dan β. Jika \(\alpha =n\beta \), tunjukkan bahwa \(\mathrm{nb^{2}=ac(n+1)^{2}}\) !
Jawab :
α + β = \(\mathrm{-\frac{b}{a}}\) …………………..(1)
αβ = \(\mathrm{\frac{c}{a}}\) ………………………….(2)
Substitusi α = nβ ke (1)
(nβ) + β = \(\mathrm{-\frac{b}{a}}\)
β(n + 1) = \(\mathrm{-\frac{b}{a}}\)
β = \(\mathrm{-\frac{b}{a(n+1)}}\) ……………….. (3)
Substitusi α = nβ ke (2)
(nβ)β = \(\mathrm{\frac{c}{a}}\)
nβ2 = \(\mathrm{\frac{c}{a}}\)
β2 = \(\mathrm{\frac{c}{an}}\) ………………………..(4)
Substitusi (3) ke (4)
\(\mathrm{\left (\frac{-b}{a(n+1)} \right )^{2}=\frac{c}{an}}\)
\(\mathrm{\frac{b^{2}}{a^{2}(n+1)^{2}}=\frac{c}{an}}\)
anb2 = a2c(n + 1)2
nb2 = ac(n + 1)2
Contoh 4
Akar-akar persamaan kuadrat \(\mathrm{x^{2}+(k-1)x+3=0}\) adalah α dan β. Jika \(\alpha =3\beta \) dan k > 0, maka nilai k yang memenuhi adalah…
a = 1
b = k − 1
c = 3
α = 3β ⇒ n = 3
nb2 = ac(n + 1)2
3 (k − 1)2 = 1.3 (3 + 1)2
(k − 1)2 = 16
k − 1 = ±4
k = 1 ± 4
k = 1 + 4 atau k = 1 − 4
k = 5 atau k = −3
Karena k > 0, maka k = 5