Secara umum integral dapat dibedakan menjadi dua, yaitu integral tak tentu dan integral tentu.
Integral tak tentu fungsi f(x) dinyatakan oleh :
dengan :
f(x) = integran/fungsi yang diintegralkan
F(X) = anti turunan dari f(x)
C = konstanta
Rumus-Rumus Dasar Integral
Untuk f(x) = a dengan a konstan, maka :
$$\mathrm{\mathbf{\int a\:dx=ax+C}}$$ Contoh
1. ∫ 2 dx = 2x + C
2. ∫ \(\frac{1}{2}\) dx = \(\frac{1}{2}\)x + C
Untuk f(x) = axn , n ≠ −1 maka :
$$\mathrm{\mathbf{\int ax^{n}\:dx=\frac{a}{n+1}x^{n+1}+C}}$$ Contoh
1. ∫ 2x4 dx = …
Jawab :
⇒ \(\mathrm{\frac{2}{4+1}}\)x4+1 + C
⇒ \(\mathrm{\frac{2}{5}}\)x5 + C
Jawab :
⇒ \(\mathrm{\frac{1}{-6+1}}\)x-6+1 + C
⇒ \(\mathrm{-\frac{1}{5}}\)x-5 + C
Untuk f(x) = (ax + b)n , n ≠ −1 maka :
1. ∫ (2x − 1) 4 dx = …
⇒ \(\mathrm{\frac{1}{2(4+1)}}\)(2x − 1)4+1 + C
⇒ \(\mathrm{\frac{1}{10}}\)(2x − 1)5 + C
2. ∫ (x + 1)-7 dx = …
Jawab :
⇒ \(\mathrm{\frac{1}{1(-7+1)}}\)(x + 1)-7+1 + C
⇒ \(\mathrm{-\frac{1}{6}}\)(x + 1)-6 + C
Untuk f(x) = \(\mathrm{\mathbf{\frac{1}{x}}}\), maka :
$$\mathrm{\int \mathbf{\frac{1}{x}\:dx=ln|x|+C}}$$
Untuk menentukan integral yang integrannya memuat bentuk akar atau pecahan, langkah awal yang harus dilakukan adalah mengubah terlebih dahulu integran tersebut ke bentuk eksponen (pangkat).
Berikut beberapa sifat akar dan pangkat yang sering digunakan :
- \(\mathrm{x^{m}.\;x^{n}=x^{m+n}}\)
- \(\mathrm{\frac{x^{m}}{x^{n}}=x^{m-n}}\)
- \(\mathrm{\frac{1}{x^{n}}=x^{-n}}\)
- \(\mathrm{\sqrt{x}=x^{\frac{1}{2}}}\)
- \(\mathrm{x\sqrt{x}=x^{\frac{3}{2}}}\)
- \(\mathrm{\sqrt[\mathrm{n}]{\mathrm{x^{m}}}=x^{\frac{m}{n}}}\)
Contoh
1. \(\mathrm{\int \sqrt{x}\:dx=}\)
Jawab :
\(\mathrm{\Rightarrow \int x^{\frac{1}{2}}\:dx}\)
\(\mathrm{=\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}+C}\)
\(\mathrm{=\frac{2}{3}x^{\frac{3}{2}}+C}\)
\(\mathrm{=\frac{2}{3}x\sqrt{x}+C}\)
2. \(\mathrm{\int \frac{1}{x^{2}}\:dx=}\)
Jawab :
\(\mathrm{\Rightarrow \int x^{-2}\:dx}\)
\(\mathrm{=\frac{1}{-2+1}x^{-2+1}+C}\)
\(\mathrm{=-x^{-1}+C}\)
\(\mathrm{=-\frac{1}{x}+C}\)
3. \(\mathrm{\int x\sqrt[3]{\mathrm{x^{2}}}\:dx=}\)
Jawab :
\(\mathrm{\Rightarrow \int x.x^{\frac{2}{3}}\:dx}\)
\(\mathrm{\Rightarrow \int x^{\frac{5}{3}}\:dx}\)
\(\mathrm{=\frac{1}{\frac{5}{3}+1}x^{\frac{5}{3}+1}+C}\)
\(\mathrm{=\frac{3}{8}x^{\frac{8}{3}}+C}\)
\(\mathrm{=\frac{3}{8}\sqrt[3]{x^{8}}+C}\) atau
\(\mathrm{=\frac{3}{8}x^{2}\sqrt[3]{x^{2}}+C}\)
Sifat-Sifat Integral
1. ∫ k f(x) dx = k ∫ f(x) dx (k = konstan)
Contoh
∫ 3x4 dx = 3 ∫ x4 dx
∫ 3x4 dx = 3 . \(\mathrm{\frac{1}{5}x^{5}+C}\)
∫ 3x4 dx = \(\mathrm{\frac{3}{5}x^{5}+C}\)
Contoh
Contoh-Contoh Latihan Soal Integral Fungsi Aljabar
Tentukan integral berikut !
a. ∫ (3x7 − π) dx = …
Jawab :
= \(\mathrm{\frac{3}{7+1}}\)x7+1 − πx + C
= \(\mathrm{\frac{3}{8}}\)x8 − πx + C
b. ∫ (6x5 + 2x3 − x2) dx = …
Jawab :
\(\mathrm{= \frac{6}{5+1}x^{5+1}+\frac{2}{3+1}x^{3+1}-\frac{1}{2+1}x}^{2+1}+C\)
\(\mathrm{= x^{6}+\frac{1}{2}x^{4}-\frac{1}{3}x}^{3}+C\)
c. \(\mathrm{\int \frac{6x^{5}-2x^{4}+9}{x^{4}}\:dx=…}\)
Jawab :
\(\mathrm{\Rightarrow \int \left (\frac{6x^{5}}{x^{4}}-\frac{2x^{4}}{x^{4}}+\frac{9}{x^{4}} \right )\:dx}\)
\(\mathrm{\Rightarrow \int \left (6x-2+9x^{-4} \right )dx}\)
\(\mathrm{=\frac{6}{1+1}x^{1+1}-2x+\frac{9}{-4+1}x^{-4+1}+C}\)
\(\mathrm{=3x^{2}-2x-3x^{-3}+C}\)
\(\mathrm{=3x^{2}-2x-\frac{3}{x^{3}}+C}\)
d. \(\mathrm{\int \left (\sqrt{x}+\frac{2}{\sqrt{x}} \right )\:dx=…}\)
Jawab :
\(\mathrm{\Rightarrow \int \left ( x^{\frac{1}{2}}+2x^{-\frac{1}{2}} \right )dx}\)
\(\mathrm{=\frac{1}{\frac{1}{2}+1}x^{\frac{1}{2}+1}+\frac{2}{-\frac{1}{2}+1}x^{-\frac{1}{2}+1}+C}\)
\(\mathrm{=\frac{2}{3}x^{\frac{3}{2}}+4x^{\frac{1}{2}}+C}\)
\(\mathrm{=\frac{2}{3}x\sqrt{x}+4\sqrt{x}+C}\)
e. \(\mathrm{\int \left ( x\sqrt{x}-\frac{x}{\sqrt{x}} \right )dx=…}\)
Jawab :
\(\mathrm{\Rightarrow \int \left (x^{\frac{3}{2}}-x^{\frac{1}{2}} \right )dx}\)
\(\mathrm{=\frac{2}{5}x^{\frac{5}{2}}-\frac{2}{3}x^{\frac{3}{2}}+C}\)
\(\mathrm{=\frac{2}{5}x^{2}\sqrt{x}-\frac{2}{3}x\sqrt{x}+C}\)
f. \(\mathrm{\int \left ( \sqrt{x}+\frac{1}{ \sqrt{x}} \right )^{2}\:dx=}\)
Jawab :
\(\mathrm{\Rightarrow \int \left (x+2+\frac{1}{x} \right )\:dx}\)
\(\mathrm{=\frac{1}{1+1}x^{1+1}+2x+ln|x|+C}\)
\(\mathrm{=\frac{1}{2}x^{2}+2x+ln|x|+C}\)
g. \(\mathrm{\int \frac{1}{\sqrt[3]{(3x+1)^{2}}}\:dx}\)
Jawab :
\(\mathrm{\Rightarrow \int (3x+1)^{-\frac{2}{3}}\:dx}\)
\(\mathrm{=\frac{1}{3\left ( -\frac{2}{3}+1 \right )}(3x+1)^{-\frac{2}{3}+1}+C}\)
\(\mathrm{=(3x+1)^{\frac{1}{3}}+C}\)
\(\mathrm{=\sqrt[3]{3x+1}+C}\)
Contoh 2
Tentukan f(x) jika diketahui :
a. f ‘(x) = 2x + 2 ; f(0) = −1
Jawab :
f(x) = ∫ f ‘(x) dx
f(x) = ∫ (2x + 2) dx
f(x) = x2 + 2x + C
f(0) = −1
⇔ (0)2 + 2(0) + C = −1
⇔ C = −1
Jadi, f(x) = x2 + 2x − 1
b. f ”(x) = 12x − 2 ; f(0) = 2 dan f ‘(1) = 4
Jawab :
f ‘(x) = ∫ f ”(x) dx
f ‘(x) = ∫ (12x − 2) dx
f ‘(x) = 6x2 − 2x + C
f ‘(1) = 4
⇔ 6(1)2 − 2(1) + C = 4
⇔ C = 0
diperoleh : f ‘(x) = 6x2 − 2x
f(x) = ∫ f ‘(x) dx
f(x) = ∫ (6x2 − 2x) dx
f(x) = 2x3 − x2 + C
f(0) = 2
⇔ 2(0)3 − (0)2 + C = 2
⇔ C = 2
Jadi, f(x) = 2x3 − x2 + 2