Aplikasi Integral : Menghitung Volume Benda Putar

Volume Benda Putar Terhadap Sumbu-x

Volume benda putar jika daerah yang dibatasi kurva y = f(x), sumbu-x, garis \(\mathrm{x = a}\) dan \(\mathrm{x = b}\) diputar 360o mengelilingi sumbu-x adalah :
$$\mathrm{V=\pi\int_{a}^{b}y^{2}\:dx\;\;atau}$$ $$\mathrm{V=\pi\int_{a}^{b}\left [ f(x) \right ]^{2}\:dx}$$

Aplikasi Integral : Menghitung Volume Benda Putar

Volume benda putar jika daerah yang dibatasi kurva y1 = f(x), y2 = g(x), garis \(\mathrm{x = a}\) dan \(\mathrm{x = b}\) diputar 360o mengelilingi sumbu-x adalah : $$\mathrm{V=\pi\int_{a}^{b}\left (y{_{1}}^{2}-y{_{2}}^{2} \right )\:dx\;\;atau}$$ $$\mathrm{V=\pi\int_{a}^{b}\left ( \left [f(x)  \right ]^{2}-\left [g(x)  \right ]^{2} \right )\:dx}$$

Aplikasi Integral : Menghitung Volume Benda Putar

Volume Benda Putar Terhadap Sumbu-y

Volume benda putar jika daerah yang dibatasi kurva x = f(y), sumbu-y, garis \(\mathrm{y = a}\) dan \(\mathrm{y = b}\) diputar 360o mengelilingi sumbu-y adalah : $$\mathrm{V=\pi\int_{a}^{b}x^{2}\:dy\;\;atau}$$ $$\mathrm{V=\pi\int_{a}^{b}\left [ f(y) \right ]^{2}\:dy}$$

Aplikasi Integral : Menghitung Volume Benda Putar

Volume benda putar jika daerah yang dibatasi kurva x1 = f(y), x2 = g(y), garis \(\mathrm{x = a}\) dan \(\mathrm{x = b}\) diputar 360o mengelilingi sumbu-y adalah : $$\mathrm{V=\pi\int_{a}^{b}\left (x{_{1}}^{2}-x{_{2}}^{2} \right )\:dy\;\;atau}$$ $$\mathrm{V=\pi\int_{a}^{b}\left ( \left [f(y)  \right ]^{2}-\left [g(y)  \right ]^{2} \right )\:dy}$$

Aplikasi Integral : Menghitung Volume Benda Putar
Contoh 1
Volume Benda putar yang terbentuk jika daerah yang dibatasi kurva \(\mathrm{y=2x-x^{2}}\), sumbu-x, \(\mathrm{0\leq x\leq 1}\), diputar 360o mengelilingi sumbu-x adalah… satuan volume.

Jawab :
Titik potong sumbu-x  ⇒ y = 0
2x − x2 = 0
x(2 − x) = 0
x = 0 atau x = 2

Aplikasi Integral : Menghitung Volume Benda Putar

V = π\(\mathrm{\int_{0}^{1}}\)y2 dx
V = π\(\mathrm{\int_{0}^{1}}\)(2x − x2)2 dx
V = π\(\mathrm{\int_{0}^{1}}\)(x4 − 4x3 + 4x2) dx
V = π\(\mathrm{\left [\frac{1}{5}x^{5}-x^{4}+\frac{4}{3}x^{3}  \right ]_{0}^{1}}\)
V = \(\frac{8}{15}\)π

Contoh 2
Volume benda putar yang terjadi jika daerah diantara kurva \(\mathrm{y=\sqrt{x}}\) dan \(\mathrm{y=\frac{1}{2}x}\), diputar 360o mengelilingi sumbu-x adalah… satuan volume.

Jawab :
Misalkan :
y1 = √x
y2 = \(\frac{1}{2}\)x

Titik potong kurva :
y1 = y2
√x = \(\frac{1}{2}\)x  (kuadratkan)
x = \(\frac{1}{4}\)x2   (kali 4)
4x = x2
4x − x= 0
x (4 − x) = 0
x = 0 atau x = 4

Aplikasi Integral : Menghitung Volume Benda Putar

V = π\(\mathrm{\int_{0}^{4}}\)(y12 − y22) dx
V = π\(\mathrm{\int_{0}^{4}\left \{ \left ( \sqrt{x} \right )^{2}-\left ( \frac{1}{2}x \right )^{2} \right \}\:dx}\)
V = π\(\mathrm{\int_{0}^{4}}\)(x − \(\frac{1}{4}\)x2) dx
V = π\(\mathrm{\left [ \frac{1}{2}x^{2}-\frac{1}{12}x^{3} \right ]_{0}^{4}}\)
V = \(\frac{8}{3}\)π

Contoh 3
Daerah yang dibatasi kurva \(\mathrm{y=x^{2}}\), garis \(\mathrm{y=2-x}\) dan sumbu-x diputar diputar 360o mengelilingi sumbu-x. Volume benda putar yang terjadi adalah … satuan volume.

Jawab :
Misalkan :
y1 = x2
y2 = 2 − x

Titik potong kurva :
y1 = y2
x2 = 2 − x
x2 + x − 2 = 0
(x + 2)(x − 1) = 0
x = −2 atau x = 1

Titik potong garis dan sumbu-x  ⇒ y = 0
2 − x = 0
x = 2

Aplikasi Integral : Menghitung Volume Benda Putar

VI = π\(\mathrm{\int_{0}^{1}}\) y12 dx
VI = π\(\mathrm{\int_{0}^{1}}\) (x2)2 dx
VI = π\(\mathrm{\int_{0}^{1}}\) x4 dx
VI = π\(\mathrm{\left [\frac{1}{5}x^{5}  \right ]_{0}^{1}}\)
VI = \(\frac{1}{5}\)π

VII = π\(\mathrm{\int_{1}^{2}}\) y22 dx
VII = π\(\mathrm{\int_{1}^{2}}\) (2 − x)2 dx
VII = π\(\mathrm{\int_{1}^{2}}\) (x2 − 4x + 4) dx
VII = π\(\mathrm{\left [ \frac{1}{3}x^{3}-2x^{2}+4x \right ]_{1}^{2}}\)
VII = \(\frac{1}{3}\)π

Sehingga diperoleh :
V = VI + VII
V = \(\frac{1}{5}\)π + \(\frac{1}{3}\)π
V = \(\frac{8}{15}\)π


Contoh 4
Volume benda putar yang terjadi jika daerah yang dibatasi kurva \(\mathrm{y^{2}=2x+4}\) dan sumbu-y dikuadran kedua, diputar 360o mengelilingi sumbu-y adalah … satuan volume.

Jawab :
y2 = 2x + 4
⇒ 2x = y2 − 4
⇒ x = \(\frac{1}{2}\)y2 − 2

Titik potong kurva dan sumbu-y  ⇒ x = 0
\(\frac{1}{2}\)y2 − 2 = 0 (kali 2)
y2 − 4 = 0
(y + 2)(y − 2) = 0
y = −2 atau y = 2

Aplikasi Integral : Menghitung Volume Benda Putar

V = π\(\mathrm{\int_{0}^{2}}\) x2 dy
V = π\(\mathrm{\int_{0}^{2}}\) (\(\frac{1}{2}\)y2 − 2)2 dy
V = π\(\mathrm{\int_{0}^{2}}\) (\(\frac{1}{4}\)y4 − 2y2 + 4) dy
V = π\(\mathrm{\left [ \frac{1}{20}y^{5}-\frac{2}{3}y^{3}+4y \right ]_{0}^{2}}\)
V = \(\frac{64}{15}\)π

Contoh 5
Volume benda putar yang terbentuk bila daerah antara kurva \(\mathrm{y=x^{2}-4}\) dan \(\mathrm{y=2x-4}\) diputar 360o mengelilingi sumbu-y adalah … satuan volume.

Jawab :
y =  x2 − 4
⇒ x2 = y + 4

y = 2x − 4
⇒ 2x = y + 4
⇒ x = \(\frac{1}{2}\)y + 2
⇒ x2 = (\(\frac{1}{2}\)y + 2)2

Misalkan :
x12 = y + 4
x22 = (\(\frac{1}{2}\)y + 2)2

Titik potong kurva :
x12 = x22
y + 4 = (\(\frac{1}{2}\)y + 2)2
y + 4 = \(\frac{1}{4}\)y2 + 2y + 4
\(\frac{1}{4}\)y2 + y = 0  (kali 4)
y2 + 4y = 0
y(y + 4) = 0
y = 0 atau y = −4

Aplikasi Integral : Menghitung Volume Benda Putar

V = π\(\mathrm{\int_{-4}^{0}}\)(x12 − x22) dx
V = π\(\mathrm{\int_{-4}^{0}}\){(y + 4) − (\(\frac{1}{4}\)y2 + 2y + 4)} dx
V = π\(\mathrm{\int_{-4}^{0}}\)(\(-\frac{1}{4}\)y2 − y ) dx
V = π\(\mathrm{\left [ -\frac{1}{12}y^{3}-\frac{1}{2}y^{2} \right ]_{-4}^{0}}\)
V = \(\frac{8}{3}\)π