Pembahasan Soal UN Aplikasi Turunan Matematika

Pembahasan Soal UN Aplikasi Turunan Matematika

Pembahasan soal Ujian Nasional (UN) SMA bidang studi matematika IPA tentang Aplikasi Turunan dalam pemecahan masalah yang berkaitan dengan maksimum dan minimum.

1.  UN 2005

Kawat sepanjang 120 m akan dibuat kerangka seperti pada gambar dibawah ini. Agar luasnya maksimum panjang kerangka (p) tersebut adalah…
Pembahasan Soal UN Aplikasi Turunan Matematika
A. 16 m
B.  18 m
C.  20 m
D.  22 m
E.  24 m

Pembahasan :
Persamaan kerangka :
3p + 4l = 120
4l = 120 − 3p
l = 30 − \(\frac{3}{4}\)p

Persamaan luas :
L = p × 2l
L = p × 2 (30 − \(\frac{3}{4}\)p)

L = 60p − \(\frac{3}{2}\)p2

Luas akan maksimum jika :
L’ = 0
60 − 3p = 0
p = 20

Jadi, panjang kerangka agar luas maksimum adalah 20 m.

Jawaban : C

2.  UN 2005
Suatu perusahaan menghasilkan produk yang dapat diselesaikan dalam x jam dengan biaya per jam \(\mathrm{\left ( 4x-800+\frac{120}{x} \right )}\) ratus ribu rupiah. Agar biaya minimum, produk tersebut dapat diselesaikan dalam waktu…
A.  40 jam
B.  60 jam
C.  100 jam
D.  120 jam
E.  150 jam

Pembahasan :
Biaya per jam : 4x − 800 + \(\mathrm{\frac{120}{x}}\)
Biaya untuk x jam :
B(x) = (4x − 800 + \(\mathrm{\frac{120}{x}}\))x
B(x) = 4x2 − 800x + 120

Biaya akan minimum jika :
B'(x) = 0
8x − 800 = 0
⇒ x = 100

Jadi, waktu yang diperlukan agar biaya minimum adalah 100 jam.

Jawaban : C

3.  UN 2005
Persamaan gerak suatu partikel dinyatakan dengan rumus \(\mathrm{x=f(t)=\sqrt{3t+1}}\) (s dalam meter dan t dalam detik). Kecepatan partikel pada saat t = 8 detik adalah…
A.  \(\frac{3}{10}\) m/detik
B.  \(\frac{3}{5}\) m/detik
C.  \(\frac{3}{2}\) m/detik

D.  3 m/detik
E.  5 m/detik

Pembahasan :
f(t) = \(\mathrm{\sqrt{3t+1}}\)
⇒ f ‘(t) = \(\mathrm{\frac{3}{2\sqrt{3t+1}}}\)

v(t) = \(\mathrm{\frac{df}{dt}}\)
v(t) = f ‘(t) = \(\mathrm{\frac{3}{2\sqrt{3t+1}}}\)

v(8) = \(\mathrm{\frac{3}{2\sqrt{3.8+1}}}\)
v(8) = \(\frac{3}{10}\)

Jadi, kecepatan partikel pada t = 8 adalah \(\frac{3}{10}\) m/detik
Jawaban : A


4.  UN 2006
Sebuah peluru ditembakkan vertikal ke atas dengan kecepatan awal Vo m/detik. Tinggi peluru setelah t detik dinyatakan dengan fungsi \(\mathrm{h(t)=100+40t-4t^{2}}\). Tinggi masksimum yang dapat dicapai peluru tersebut adalah…
A.  160 m
B.  200 m
C.  340 m
D.  400 m
E.  800 m

Pembahasan :
h(t) = 100 + 40t − 4t2
⇒ h'(t) = 40 − 8t

Tinggi peluru akan maksimum, jika :
h'(t) = 0
40 − 8t = 0
t = 5

Jadi, tinggi maksimum peluru dicapai pada saat t = 5, dengan tinggi maksimumnya adalah
h(5) = 100 + 40(5) − 4(5)2
h(5) = 100 + 200 − 100
h(5) = 200

Jawaban : B

5.  UN 2006
Suatu pekerjaan dapat diselesaikan  dalam x hari dengan biaya \(\mathrm{4x-160+\frac{2000}{x}}\) ribu rupiah per hari. Biaya minimum per hari penyelesaian pekerjaan tersebut adalah…
A.  Rp 200.000,00
B.  Rp 400.000,00
C.  Rp 560.000,00
D.  Rp 600.000,00
E.  Rp 800.000,00

Pembahasan :
Biaya per hari : \(\mathrm{\left (4x-160+\frac{2000}{x}  \right )}\)

Biaya x hari :
B(x) = \(\mathrm{\left (4x-160+\frac{2000}{x}  \right )}\)x
B(x) = 4x2 − 160x + 2000

Biaya akan minimum jika :
B'(x) = 0
8x − 160 = 0
⇒ x = 20

Jadi, biaya akan minimum jika pekerjaan diselesaikan dalam 20 hari, dengan biaya minimum per hari
= 4x − 160 + \(\mathrm{\frac{2000}{x}}\)
= 4(20) − 160 + \(\frac{2000}{20}\)
= 20  (ribuan rupiah)

Jawaban : –

6.  UN 2006
Luas permukaan balok dengan alas persegi adalah 150 cm2. Agar diperoleh volume balok yang maksimum, panjang alas balok adalah…
A.  3 cm
B.  5 cm
C.  6 cm
D.  15 cm
E.  25 cm

Pembahasan :
Karena alas berbentuk persegi maka p = l

L = 150
2(pl + pt + lt) = 150
p+ pt + lt = 75
p2 + pt + pt = 75  (p = l)
2pt = 75 − p2
t = \(\mathrm{\frac{75-p^{2}}{2p}}\)

V = p. l. t
V = p2t  (p = l)
V = p2\(\mathrm{\left (\frac{75-p^{2}}{2p}  \right )}\)
V = \(\frac{75}{2}\)p − \(\frac{1}{2}\)p3

Volume akan maksimum, jika :
V’ = 0
\(\frac{75}{2}\) − \(\frac{3}{2}\)p2 = 0
75 − 3p2 = 0
⇒ p = 5

Jadi, volume akan maksimum jika panjang balok 5 cm.

Jawaban : B

7.  UN 2007
Perhatikan gambar !

Pembahasan Soal UN Aplikasi Turunan Matematika

Luas daerah yang diarsir pada gambar akan mencapai maksimum jika koordinat titik M adalah…
A.  (2, 5)
B.  (2, \(\frac{5}{2}\))
C.  (2, \(\frac{2}{5}\))
D.  (\(\frac{5}{2}\), 2)
E.  (\(\frac{2}{5}\), 2)

Pembahasan :
Cara I
Persamaan garis yang memotong sumbu-x di (4, 0) dan memotong sumbu-y di (0, 5) adalah :
5x + 4y = 5 . 4
5x + 4y = 20

4y = 20 − 5x
y = 5 − \(\frac{5}{4}\)x

L = x . y
L = x\(\mathrm{\left ( 5-\frac{5}{4}x \right )}\)
L = 5x − \(\frac{5}{4}\)x2

Luas akan maksimum, jika :
L’ = 0
5 − \(\frac{5}{2}\)x = 0
⇒ x = 2

5x + 4y = 20
5(2) + 4y = 20
⇒ y = \(\frac{5}{2}\)

M = (2, \(\frac{5}{2}\))

Cara II
Sebuah garis dengan
titik potong sumbu-x : (a, 0)
titik potong sumbu-y : (0, b)
M(x, y) terletak pada garis
|xy| akan maksimum jika M\(\mathrm{\left ( \frac{a}{2},\,\frac{b}{2} \right )}\)

a = 4 dan b = 5
M\(\mathrm{\left ( \frac{a}{2},\,\frac{b}{2} \right )}\)
M(2, \(\frac{5}{2}\))

Jawaban : B

8.  UN 2008
Sebuah kotak tanpa tutup dengan alasnya berbentuk persegi, mempunyai voleme 4 m2 terbuat dari selembar karton. Agar karton yang diperlukan sedikit mungkin, maka ukuran panjang, lebar dan tinggi kotak berturut-turut adalah…
A.  2 m, 1 m, 2 m
B.  2 m, 2 m, 1 m
C.  1 m, 2 m, 2 m
D.  4 m, 1 m, 1 m
E.  1 m, 1 m, 4 m

Pembahasan :
Karena alas berbentuk persegi, maka p = l

Volume kotak :
V = p. l. t
V = p2t  (p = l)
4 = p2t
t = \(\mathrm{\frac{4}{p^{2}}}\)

Luas kotak tanpa tutup :
L = pl + 2pt + 2lt
L = p2 + 2pt + 2pt  (p = l)
L = p2 + 4pt
L = p2 + 4p\(\mathrm{\left (\frac{4}{p^{2}}  \right )}\)
L = p2 + \(\mathrm{\frac{16}{p}}\)

Luas akan maksimum jika :
L’ = 0
2p − \(\mathrm{\frac{16}{p^{2}}}\) = 0
2p = \(\mathrm{\frac{16}{p^{2}}}\)
p3 = 8
⇒ p = 2
⇒ l = 2

t = \(\mathrm{\frac{4}{p^{2}}}\) = \(\mathrm{\frac{4}{2^{2}}}\)
⇒ t = 1

Jadi, ukuran panjang, lebar dan tinggi berturut-turut adalah 2 m, 2 m, 1 m.

Jawaban : B

9.  UN 2009
Jumlah bilangan positif x dan y adalah 18. Nilai maksimum xy adalah…
A.  100
B.  81
C.  80
D.  70
E.  72

Pembahasan :
x + y = 18
y = 18 − x

Misalkan :
L = xy
L = x (18 − x)
L = 18x − x2

L akan maksimum jika :
L’ = 0
18 − 2x = 0
⇒ x = 9

x + y = 18
9 + y = 18
⇒ y = 9

Jadi, nilai maksimum xy = 9 . 9 = 81

Jawaban : B

10.  UN 2009
Seorang petani menyemprotkan obat pembasmi hama pada tanamannya. Reaksi obat tersebut t jam setelah disemprotkan dinyatakan dengan rumus \(\mathrm{f(t)=15t^{2}-t^{3}}\). Reaksi maksimum tercapai setelah…
A.  3 jam
B.  5 jam
C.  10 jam
D.  15 jam
E.  30 jam

Pembahasan :
Fungsi reaksi :
f(t) = 15t2 − t3

Reaksi akan maksimum jika :
f ‘(t) = 0
30t − 3t= 0
3t (10 − t) = 0
t = 0 atau t = 10

Jadi, reaksi maksimum tercapai setelah 10 jam.

Jawaban : C 

11.  UN 2010
Selembar karton berbentuk persegi panjang dengan lebar 5 dm dan panjang 8 dm akan dibuat kotak tanpa tutup. Pada keempat pojok karton dipotong persegi yang sisinya x dm. Ukuran kotak tersebut (panjang, lebar, tinggi) agar volume maksimum berturut-turut adalah…
A.  10 dm, 7 dm, 1 dm
B.  8 dm , 5 dm, 1 dm
C.  7 dm, 4 dm, 2 dm
D.  7 dm, 4 dm, 1 dm
E.  6 dm, 3 dm, 1 dm

Pembahasan :

Pembahasan Soal UN Aplikasi Turunan Matematika

Ukuran balok :

p = 8 − 2x
l = 5 − 2x
t = x

V = plt
V = (8 − 2x)(5 − 2x) x
V = (40 − 26x + 4x2) x
V = 4x3 − 26x2 + 40x

Volume akan maksimum jika :
V’ = 0
12x2 − 52x + 40 = 0
3x2 − 13x + 10 = 0
(3x − 10)(x − 1) = 0
x = \(\frac{10}{3}\) atau x = 1

Untuk x = 1, maka
p = 8 − 2x = 8 − 2(1) = 6
l = 5 − 2x = 5 − 2(1) = 3
t = x = 1

Jadi, volume akan maksimum jika panjang, lebar dan tinggi balok berturut-turut 6 dm, 3 dm, 1 dm.

Jawaban : E


12.  UN 2011
Suatu perusahaan menghasilkan x produk dengan biaya sebesar \(\mathrm{\left (9.000+1.000x+10x^{2}  \right )}\) rupiah. Jika semua hasil produk perusahaan tersebut habis dijual dengan harga Rp5.000,00 untuk satu produknya, maka laba maksimum yang dapat diperoleh perusahan tersebut adalah…
A.  Rp149.000,00
B.  Rp249.000,00
C.  Rp391.000,00
D.  Rp609.000,00
E.  Rp757.000,00

Pembahasan ;
Biaya produksi x produk : 9.000 + 1.000x + 10x2
Biaya penjualan x produk : 5.000x

Laba = Biaya penjualan − Biaya produksi
L(x) = 5.000x − (9.000 + 1.000x + 10x2)
L(x) = 5.000x − 9.000 − 1.000x − 10x2
L(x) = −10x2 + 4.000x − 9.000

Laba akan maksimum, jika :
L'(x) = 0
−20x + 4.000 = 0
⇒ x = 200

Jadi, laba akan maksimum jika perusahaan menghasilkan 200 produk, dengan laba maksimumnya adalah :
L(200) = −10(200)2 + 4.000(200) − 9.000
L(200) = −400.000 + 800.000 − 9.000
L(200) = 391.000

Jawaban : C

13.  UN 2012
Suatu perusahaan memproduksi x unit barang dengan biaya \(\mathrm{\left ( 5x^{2}-10x+30 \right )}\) dalam ribuan rupiah untuk tiap unit. Jika barang tersebut terjual habis dengan harga Rp 50.000,00 tiap unit, maka keuntungan maksimum yang diperoleh perusahaan tersebut adalah…
A.  Rp10.000,00
B.  Rp20.000,00
C.  Rp30.000,00
D.  Rp40.000,00
E.  Rp50.000,00

Pembahasan :
Biaya produksi x unit : (5x2 − 10x + 30)x
Biaya penjualan x unit : 50x
(kedua biaya diatas dalam ribuan rupiah)

Keuntungan = Biaya penjualan − Biaya produksi
U(x) = 50x − (5x2 − 10x + 30)x
U(x) = 50x − 5x3 + 10x2 − 30x
U(x) = −5x3 + 10x2 + 20x

Keuntungan akan maksimum jika :
U'(x) = 0
−15x2 + 20x + 20 = 0 (bagi −5)
3x2 − 4x − 4 = 0
(3x + 2)(x − 2) = 0
x = \(\frac{3}{2}\) atau x = 2

Jadi, keuntungan akan maksimum jika perusahaan memproduksi 2 unit barang, dengan keuntungan maksimumnya adalah :
U(2) = −5(2)3 + 10(2)2 + 20(2)

U(2) = −40 + 40 + 40
U(2) = 40  (dalam ribuan rupiah)

Jawaban : D

14.  UN 2013
Sebuah taman berbentuk persegi dengan keliling \(\mathrm{\left ( 2x+24 \right )}\) m dan lebar \(\mathrm{\left ( 8-x \right )}\). Agar luas taman maksimum, maka panjang taman tersebut adalah…
A.  4 m
B.  8 m
C.  10 m
D.  12 m
E.  13 m

Pembahasan :
K = 2x + 24 = 2(x + 12)
l = 8 − x

K = 2(p + l)
2(x + 12) = 2(p + 8 − x)
x + 12 = p + 8 − x
p = 2x + 4

L = p . l
L = (2x + 4)(8 − x)
L = −2x2 + 12x + 32

Luas akan maksimum jika :
L’ = 0
−4x + 12 = 0
⇒ x = 3

p = 2x + 4
p = 2(3) + 4
p = 10

Jadi, panjang taman agar luas maksimum adalah 10 m.

Jawaban : C

15.  UN 2013
Dua bilangan m dan n memenuhi hubungan 2m − n = 40. Nilai minimum dari \(\mathrm{p=m^{2}+n^{2}}\) adalah…
A.  320
B.  295
C.  280
D.  260
E.  200

Pembahasan :
2m − n = 40
n = 2m − 40

p = m2 + n2
p = m2 + (2m − 40)2
p = m2 + 4m2 − 160m + 1600
p = 5m2 − 160m + 1600

p akan minimum jika :
p’ = 0
10m − 160 = 0
⇒ m = 16

n = 2m − 40
n = 2(16) − 40
⇒ n = −8

p = m2 + n2
p = 162 + (−8)2
p = 320

Jawaban : A

16.  UN 2015
Icha akan meniup balon karet  berbentuk bola. Ia menggunakan pompa untuk memasukkan udara dengan laju pertambahan volume udara 40 cm2/detik. Jika laju pertambahan jari-jari bola 20 cm/detik, jari-jari bola setelah ditiup adalah…
A.  \(\mathrm{\frac{1}{\sqrt{\pi }}}\) cm
B.  \(\mathrm{\frac{1}{\sqrt{2\pi }}}\) cm
C.  \(\mathrm{\frac{1}{2\sqrt{\pi }}}\) cm
D.  \(\mathrm{\frac{2}{3\sqrt{\pi }}}\) cm
E.  \(\pi\) cm

Pembahasan :
Laju pertambahan volume udara :
\(\mathrm{\frac{dV}{dt}}\) = 40

Laju pertambahan jari-jari bola :
\(\mathrm{\frac{dr}{dt}}\) = 20

Volume bola :
V = \(\frac{4}{3}\)πr3
\(\mathrm{\frac{dV}{dr}}\) = 4πr2

Dengan aturan rantai :
\(\mathrm{\frac{dV}{dt}}\) = \(\mathrm{\frac{dV}{dr}}\) × \(\mathrm{\frac{dr}{dt}}\)
40 = 4πr2 × 20
1 = 2πr2

r2 = \(\frac{1}{2\pi }\)
r = \(\sqrt{\frac{1}{2\pi }}\)
r = \(\frac{1}{\sqrt{2\pi }}\)

Jawaban : B

17.  UN 2016

Pembahasan Soal UN Aplikasi Turunan Matematika

Sebidang tanah akan dibatasi oleh pagar dengan menggunakan kawat berduri seperti pada gambar. Batas tanah yang dibatasi pagar adalah yang tidak bertembok. Kawat yang tersedia 800 meter. Berapakah luas maksimum yang dapat dibatasi oleh pagar yang tersedia?
A.  80.000 m2
B.  40.000 m2
C.  20.000 m2
D.  5.000 m2
E.  2.000 m2

Pembahasan :
Misalkan panjang area tanah p dan lebar l
Area tanah yang akan dibatasi pagar adalah (p + 2l)

Perhatikan bentuk pagar, karena kawat yang digunakan 4 baris maka
4(p + 2l) = 800
p + 2l = 200
p = 200 − 2l

L = p × l
L = (200 − 2l) × l
L = 200l − 2l2

Luas akan maksimum jika :
L’ = 0
200 − 4l = 0
⇒ l = 50

p = 200 − 2l
p = 200 − 2(50)
⇒ p = 100

L = p × l
L = 100 × 50
L = 5000

Jadi luas maksimum adalah 5000 m2

Jawaban : D


18.  UN 2017
Seorang petani mempunyai kawat sepanjang 80 meter yang direncanakan untuk memagari kandang berbentuk tiga buah persegi panjang berdempet yang identik seperti diperlihatkan pada gambar berikut (Sisi di sepanjang gudang tidak memerlukan kawat). Luas maksimum kandang adalah …
A.  360 m2
B.  400 m2
C.  420 m2
D.  450 m2
E.  480 m2

Pembahasan Soal UN Aplikasi Turunan Matematika

Pembahasan :
Misalkan panjang kandang p dan lebar kandang l.

Persamaan panjang kawat yang digunakan untuk memagari kandang :
p + 4l = 80   →  p = 80 – 4l

Persamaan luas kandang :
L = pl   
L = (80 – 4l)l   
L = 80l – 4l2

Turunan pertama L terhadap l :
L’ = 80 – 8l

Luas akan maksimum jika L’ = 0
80 – 8l = 0
80 = 8l
l = 10

Jadi, luas akan maksimum jika l = 10, dengan luas maksimumnya adalah
L = 80(10) – 4(10)2
L = 800 – 400
L = 400

Jawaban : B

19.  UN 2017
Sebuah tabung tanpa tutup yang terbuat dari lempengan tipis dapat memuat air sebanyak 27π cm2. Luas permukaan tabung akan minimum jika jari-jari tabung sama dengan …
A.  9 cm
B.  8 cm
C.  6 cm
D.  4 cm
E.  3 cm

Pembahasan :
Persamaan volume tabung :
V = πr2 t
27π = πr2 t
27 = r2 t
t = \(\frac{27}{r^{2}}\)

Persamaan luas tabung tanpa tutup :
L = πr2 + 2πrt

L = πr2 + 2πr(\(\frac{27}{r^{2}}\))
L = πr2 + \(\frac{54 \pi}{r}\)

Turunan pertama L terhadap r :
L’ = 2πr – \(\frac{54 \pi}{r^{2}}\) 

Luas akan minimum jika L’ = 0
2πr – \(\frac{54 \pi}{r^{2}}\) = 0  (kali r2)
2πr3 – 54π = 0
2πr3 = 54π
r3 = 27
⇒  r = 3

Jawaban : E

20.  UN 2017
Sebuah akuarium tanpa tutup memiliki alas berbentuk persegi panjang dengan perbandingan panjang dan lebarnya 2 : 3. Jika luas permukaan akuarium adalah 1.800 cm2, volume maksimum akuarium tersebut adalah …
A.  3.600 cm3
B.  5.400 cm3
C.  6.300 cm3
D.  7.200 cm3
E.  8.100 cm3

Pembahasan :
\(\frac{p}{l}\) = \(\frac{2}{3}\)→   p = \(\frac{2}{3}\)l

Persamaan luas akuarium tanpa tutup :
pl + 2pt + 2lt = 1.800
(\(\frac{2}{3}\)l)l + 2(\(\frac{2}{3}\)l)t + 2lt = 1.800  (kali 3)
2l2 + 4lt + 6lt = 5400
2l2 + 10lt = 5400
10lt = 5400 – 2l2
t = \(\frac{540}{l}\) – \(\frac{1}{5}\)l

Persamaan volume akuarium :
V = plt
V = \(\frac{2}{3}\)l . l . (\(\frac{540}{l}\) – \(\frac{1}{5}\)l)
V = 360l – \(\frac{2}{15}\)l3

Turunan pertama V terhadap l :
V’ = 360 – \(\frac{6}{15}\)l2

Volume akan maksimum jika V’ = 0
360 – \(\frac{6}{15}\)l2 = 0
360 = \(\frac{6}{15}\)l2
l2 = 900
l = 30

Jadi, volume maksimum aquarium adalah
V = 360(30) – \(\frac{2}{15}\)(30)3
V = 10.800 – 3.600
V = 7.200

Jawaban : D